CLASS 10TH MATHS CH-6 THEOREM 6.6

Theorem 6.6 states that : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
We need to prove this theorem.
Given: Two similar triangles ABC and PQR.

To prove: ar(ABC) = [AB]² = [BC]² 
                 ar(PQR)    [PQ]      [QR]
    = [CA]²
       [RP]

Constrution: Draw two altitudes name as AM and PN of triangles. 

Proof: Area of triangle = 1/2 × base × height 
So,  ar(ABC) = 1/2 × BC × AM
 And ar(PQR) = 1/2 × QR × PN
 
Now, the ratio of both areas,
       ar(ABC) = 1/2 × BC × AM
       ar(PQR)    1/2 × QR × PN
   
       ar(ABC) = BC × AM  (1)
       ar(PQR)    QR × PN

Now, in triangle ABM and PQN,
                √B = √Q  [ ABC ~ PQR ]
                √M = √N [ Both 90°]
         So, triangle ABM~ triangle PQN
Therefore,   AM = AB  (2)
                     PN     PQ
So,  ar[ABC] = BC × AM
       ar[PQR]     QR × PN

       ar[ABC] = BC × AB  [From (2)]
       ar[PQR]    QR    PQ

Now,  triangle ABC ~ triangle PQR  [Given]
  So,    AB = BC = CA  (3)
           PQ    QR     RP

  So,  ar[ABC] = BC × AB
         ar[PQR]    QR    PQ
         ar[ABC] = AB × AB  [From(3)]
         ar[PQR]    PQ    PQ
         ar[ABC] = [AB]²
         ar[PQR]    [PQ]

Now from (3),
    ar[ABC] = [AB]² = [BC]² = [CA]²
    ar[PQR]    [PQ]      [QR]     [RP]
Hence, Proved.

Please Subscribe to get notification for new post.

Comments